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Overadjustment Bias and Unnecessary Adjustment in
Epidemiologic Studies

Enrique F. Schisterman,a Stephen R. Cole,b and Robert W. Plattc

Abstract: Overadjustment is defined inconsistently. This term is
meant to describe control (eg, by regression adjustment, stratifica-
tion, or restriction) for a variable that either increases net bias or
decreases precision without affecting bias. We define overadjust-
ment bias as control for an intermediate variable (or a descending
proxy for an intermediate variable) on a causal path from exposure
to outcome. We define unnecessary adjustment as control for a
variable that does not affect bias of the causal relation between
exposure and outcome but may affect its precision. We use causal
diagrams and an empirical example (the effect of maternal smoking
on neonatal mortality) to illustrate and clarify the definition of
overadjustment bias, and to distinguish overadjustment bias from
unnecessary adjustment. Using simulations, we quantify the amount
of bias associated with overadjustment. Moreover, we show that this
bias is based on a different causal structure from confounding or
selection biases. Overadjustment bias is not a finite sample bias,
while inefficiencies due to control for unnecessary variables are a
function of sample size.

(Epidemiology 2009;20: 488–495)

Epidemiologists often attempt to estimate the total (ie,
direct and indirect) causal effect of an exposure (compared

with a reference level) on an outcome of interest. Although

confounding1and selection biases2,3 have been discussed ex-
tensively in the epidemiologic literature, the concept of
“overadjustment” has had relatively little attention. The def-
inition of overadjustment remains vague and the causal struc-
ture of this concept has not been well described.

The Dictionary of Epidemiology4 cites a seminal paper
by Breslow5 in broadly defining overadjustment as “Statisti-
cal adjustment by an excessive number of variables or pa-
rameters, uninformed by substantive knowledge (eg, lacking
coherence with biologic, clinical, epidemiological, or social
knowledge). It can obscure a true effect or create an apparent
effect when none exists.” Rothman and Greenland6 discuss
overadjustment in the context of intermediate variables: “In-
termediate variables, if controlled in an analysis, would
usually bias results towards the null. . . . . Such control of an
intermediate may be viewed as a form of overadjustment.”
One also finds reference to the term overadjustment in set-
tings with unnecessary control for variables.7 In summary,
overadjustment sometimes means control (eg, by regression
adjustment, stratification, restriction) for a variable that (a)
increases rather than decreases net bias or (b) affects preci-
sion without affecting bias.

In an attempt to clarify these concepts, we use causal
diagrams to define overadjustment bias and to distinguish
overadjustment bias from confounding, selection bias, and
unnecessary adjustment. Furthermore, we define unnecessary
adjustment as control for a variable that does not affect bias
but does affect precision. We illustrate these concepts with an
example estimating the total effect of maternal smoking on
neonatal mortality, and simulations to describe finite sample
behavior.

CAUSAL DIAGRAMS
Ad-hoc causal diagrams have been used to encode

investigators’ knowledge about systems of variables in epi-
demiology and biologic sciences for decades (eg,5,8). Pearl9

formalized causal diagrams as directed acyclic graphs (DAGs),
providing investigators with powerful tools for bias assess-
ment. A set of rules for causal diagrams are succinctly
described by Greenland et al10 and in the appendix of Hernan
et al.11 Briefly, causal diagrams link variables by single-
headed (ie, directed) arrows that represent direct causal ef-
fects. To represent chains of causation in time, Pearl’s for-
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malization of causal diagrams does not allow a directed path9

(ie, a trail of arrows) to point back to a prior variable (ie, the
diagrams are acyclic). For a diagram to represent a causal
system, all shared causes of any pair of variables included on
the graph must also be included on the graph. The absence of
an arrow between 2 variables is a strong claim of no direct
effect of the former variable on the latter. We denote control
(eg, regression adjustment, stratification, restriction) by plac-
ing a box around the controlled variable.

Causal Diagrams for Overadjustment Bias
We define overadjustment bias as control for an inter-

mediate variable (or a descending proxy for an intermediate
variable) on a causal path from exposure to outcome. DAG 1
provides a causal diagram representing the simplest case of
overadjustment bias. For example, Bodnar et al12 evaluated
the mediating role of triglycerides (M in our notation) in the
association between prepregnancy body mass index (E in our
notation) and preeclampsia (D in our notation), which is
consistent with this causal diagram.

In this scenario, one can consistently estimate the
total causal effect of exposure E on outcome D using
common regression techniques by ignoring the intermedi-
ate variable M. However, if one controls (ie, adjusts,
stratifies, restricts) for the intermediate variable M, which
is on a causal pathway between exposure and outcome, the
total causal effect of the exposure on the outcome cannot
be consistently estimated. Yet, as Cole and Hernán et al11

and others have noted, such adjustment can provide correct
estimates of the controlled direct causal effect with added
assumptions.13–16 With control for M, the observed asso-
ciation between the exposure E and outcome D will typi-
cally be a null-biased estimate of the total causal effect. In
cases where the only causal path between exposure E and
outcome D is that path mediated through M (ie, no direct
effect of E on D, which requires a perturbation of DAG 1),
the observed association between exposure E and outcome
D will typically be null in expectation, conditional on the
intermediate M.

DAG 2 provides a second causal diagram representing
perhaps a more common case of overadjustment bias. This
diagram encodes the assumption that exposure E and unmea-
sured intermediate U both affect the outcomes D and M.
Weinberg17 described this case in her example of adjusting
for prior history of spontaneous abortion (M). An underlying

abnormality in the endometrium (U) is the unmeasured inter-
mediate caused by smoking (E), and is a cause of prior (M)
and current (D) spontaneous abortion.

Note that in DAG 2 the measured variable M is a
“descending” proxy for the intermediate variable U, which
itself is typically unmeasured; one can think of M as a
mismeasured version of U under a classic measurement error
model, or as an event caused by U. One can again consis-
tently estimate the total causal effect of exposure E on
outcome D using common regression techniques by ignoring
M, the imperfect proxy for the unmeasured intermediate
variable U. However, if one controls (ie, adjusts, stratifies,
restricts) for the variable M in DAG 2, which is a proxy for
variable U (on a causal pathway between exposure E and
outcome D) the total causal effect of the exposure on the
outcome again cannot be consistently estimated. In such
cases, one could place a half-box about U to imply the partial
adjustment for the unmeasured U that occurs with adjustment
for the measured M.

In the cases described by DAG 2, the observed associ-
ation between the exposure E and outcome D will typically be
biased toward the null with respect to the total causal effect.
But in such cases, the null-bias will be attenuated compared
with DAG 1. Even in the (extreme) case where the only
causal path between exposure E and outcome D is mediated
through the unmeasured proxy U (ie, no direct effect of E
on D, a perturbation of DAG 2), the observed association
between exposure and outcome will not be completely
negated in expectation. Intuitively, one can see that adjust-
ment for M, where M is an imperfect measure of U, leaves
a partially open pathway from E through U to D. Because
mismeasurement of exposures is ubiquitous in general18,19

and with pathway markers in particular, it has become
popular practice to try to adjust for a proxy variable of the
unmeasured intermediate variable in an attempt to decom-
pose the effect measure into direct and indirect compo-
nents. Investigators employing such approaches should be
wary of the inability of proxies to completely close path-
ways for which they proxy.11

Figure 1 quantifies the overadjustment bias (ie, bias in
the total effect estimate) under general linear models assump-
tions (ie, the direction of the bias will be the same under

(1)

(2)
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generalized linear models assumptions but the magnitude
may differ depending on the link function), where we define
(assuming no direct effect of E on D):

U � �U � �U E � �U,
M � �M � �M U � �M,
D � �D � �D U � �D.

(1)

where U is an unmeasured intermediate effect, M is the
measured descending proxy of the unmeasured intermediate
variable (U), E is the exposure of interest, and D is the
outcome of interest.

Estimating the unknown parameters in (1) is equivalent
to estimating:

D � c1 � �D �U E � �1

However, if one adjusts for M in estimating the effect
of E, one would obtain approximately:

D � c2 �
�D � �U

�1 � �M
2 �

E �
�D � �M

�1 � �M
2 �

M � �2 (2)

Therefore, the bias arising from using model (2) to esti-

mate the total effect of E on D is
�D � �U

�1 � �M
2 �

� �D � �U. One

can see in Figure 1 that the bias is a linear function of �D, �U,
and a quadratic function of �M. In the case of joint continu-
ously distributed variables, the bias for the total causal effect
of exposure E on disease D, conditioning on the measured
proxy M, is simply the difference in the partial Pearson
correlation between exposure E and disease D, controlling for
M, and the simple Pearson correlation between exposure E
and disease D.

DAG 3 is a duplicate of DAG 2, except that the proxy
variable M for unmeasured U is now an “ascending” rather
than a “descending” proxy.

In DAG 3, adjustment for M will not block the path
from exposure E to outcome D, even partially. This is
because holding M constant does not alter the effect of
exposure E on outcome D through intermediate U. Therefore,
ascending proxies should not be used as markers of pathways
when attempting to decompose total causal effects. DAG 3
could depict an alternate conception of the study of the
mediating effect of triglycerides20; here M would represent
some other cause of change in triglycerides, such as dietary or
lifestyle factors. There is a lack of bias under general or
generalized linear models assumptions, where we defined
(assuming no direct effect of E on D):

U � �U � �UEE � �UMM � �U

D � �D � �DU � �D

D � �D � �D��U � �UEE � �UMM � �U� � �D

� �D � �D�U � �D�UEE � �D�UMM � �D�U � �D (3)

In the M-adjusted model evaluating the effects of E on

D, we would estimate:

�D
� � �D � �D �U

�DE
� � �D �UE

�DM
� � �D �UM

�D
� � �D �U � �D

and in the crude model, we would estimate:

�D
� � �D � �D �U

�DE
� � �D �UE

�D
� � �D �UMM � �D�U � �D

Therefore, the bias of using the M adjusted model to

estimate the effect of E on D is given by E��DE
� � �DE

� � �
E(�D�UE – �D�UE) � 0. Bias is absent regardless of the
magnitude of �UM. One may note the similarity of DAG 3 to
standard representations of instrumental variables.21,22 In-
deed, in DAG 3, M is an instrument for the effect of
intermediate U on outcome D. However, our focus here is the
effect of exposure E on outcome D.

DAG 4 is a generalization of DAG 2. This illustrates a
general problem with the control of variables affected by
exposure,13,16 such as U or M.

(3)

FIGURE 1. Bias estimating the total effect of exposure of
interest E on the outcome D as a function of the direct effect
of the unmeasured intermediate (U) variable (�D) on the
outcome D and the direct effect of the unmeasured interme-
diate (U) variable on another independent descendent (M) of
U denoted by �M.
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Adjusting for a descending proxy M of an unmeasured
intermediate variable U (or U itself, if it were measured), is
susceptible to collider-stratification bias.23 In this instance,
the unmeasured common cause V of the proxy variable M and
the outcome variable D causes additional bias in the
association between exposure E and outcome D within
levels of M. DAG 4 is one of 10 possible cases extending DAG
2 to allow unmeasured common causes of any pair or triad of
variables on DAG 2.

Unnecessary Adjustment
We define unnecessary adjustment as occurring when

controlling for a variable whose control does not affect the
expectation of the estimate of the total causal effect between
exposure and outcome. Unnecessary adjustment occurs in 4
primary cases represented in DAG 5, namely: (a) adjusting
for a variable completely outside the system of interest (C1),
(b) adjusting for a variable that causes the exposure only (C2),
(c) adjusting for a variable whose only causal association
with variables of interest is as a descendent of the exposure
and not in the causal pathway (C3), and (d) adjusting for a
variable whose only causal association with variables of
interest is as a cause of the outcome (C4). The result of
adjustment for such variables is that the total causal effect
of exposure on outcome remains unchanged (in expectation).
We denote these cases as “bias-neutral adjustment.” How-
ever, there may be precision gain or loss which depends on the
relationship between the exposures of interest (E), the unneces-
sary adjustment variable (C1–C4), the outcome of interest and
the given sample size. Adjustment for these types of variables
could harm rather than improve one’s estimate in terms of the
combination of bias and variance.

We performed a simulation study with the goal of
estimating the total effect between the exposure variable E
and the outcome variable D and adjusted for 5 factors

including adjusting for a variable whose only causal associ-
ation with variables of interest is as a descendent of the
outcome (C5), to evaluate this trade-off in the linear setting.
The causal relation among these 7 factors is depicted in DAG
5. For simplicity, we assumed that C1, C2, and C4 follow
standard normal distributions. E is also assumed to be nor-
mally distributed, with a mean 10 and a standard deviation of
1. Moreover, we assume that all the relationships in this
system are linear, and we set the coefficients for all these
associations at 0.5.

We set C1–C5 to appear in the linear models one at a
time, corresponding to lines C1–C5 in Figure 2. Sample size
varies according to the x axis. We vary the sample size of the
study from 100 to 100,000 by orders of magnitude. For each
sample size, 1000 iterations were implemented and the Monte
Carlo mean and variance were estimated.

Figure 2 depicts the relative bias and variance of total
effect estimates after adjusting for unnecessary variables
(C1–C4). The relative bias is null for both large and small
samples (Fig. 2A, C). We observed a small reduction in
variance (gain in efficiency) in the specific simulated situa-
tion described here for the estimated total effect depicted in
Figure 2B and D when estimating the total effect when
adjusting for C1–C4.

The pursuit of unbiased effect estimates is the primary
concern when evaluating the presence or absence of overad-
justment bias. On the other hand, in the case of unnecessary
adjustment effect estimates are unbiased, and the focus turns
then to the effect of adjustment on precision. These scenarios
have been studied extensively in the literature, especially the
case of C4. As noted above, the gain or loss of efficiency is
based on the type of model (linear or nonlinear). In the linear
setting (shown above), the inclusion of extraneous determi-
nants of the outcome (a predictor, but not a confounder of the
outcome) will result in gains in efficiency for the estimation
of the association of interest. In particular, a strong associa-
tion of C4 with outcome (D) improves precision, whereas in
the confounding case (not shown here) a strong association of
C4 with exposure (E) alone may have a detrimental effect.
This is caused by a reduction in the residual sums of squares
after the extraneous variable is accounted for.

Robinson and Jewell showed no similar practical gain
in nonlinear settings, and one must pay for the inclusion of
the extraneous determinant with (at least) 1 degree of free-
dom.24 Specifically, in the logistic model, associations of
both exposure and outcome with C4 have detrimental effects
on precision for logistic regression estimators of the total
effect. Thus, although adjustment for predictive covariates in
classic linear regression can result in either increased or
decreased precision, adjustment by logistic regression will
result in a loss of precision.

In addition, when the measure of association is noncol-
lapsible (eg, odds,25 incidence density,26 or hazard ratios6),

(4)

(5)
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adjusted analyses of C4 may provide different results
compared with crude analyses and thus confuse interpre-
tation, because the conditional and marginal causal effects
may differ in nonlinear models due to noncollapsibility.
Robinson and Jewell24 discussed this topic in detail. They
demonstrated that the asymptotic relative precision of �*
to �̂ is less than or equal to 1, where �* (estimator of the
total effect) is the estimator of the � coefficient from a
crude logistic regression and �̂ is the analogous estimator
from a model adjusting for a determinant of outcome that
is unassociated with exposure. Therefore, in this case the
standard error for the crude association is smaller than or
equal to the adjusted. However, the adjusted point estimate
(an estimate of the covariate-conditional effect) will be
larger than or equal to the crude (an estimate of the
marginal effect) and biased (very slightly if the disease is
rare). The relatively small decrease in the standard error
with adjustment is typically outweighed by the relatively
large increase in the point estimate with adjustment. Thus,
statistical power to test � � 0 using the adjusted estimand
is increased, but it is for a different estimand (ie, the
covariate-conditional effect rather than the marginal ef-
fect).

In the linear model, and as depicted in Figure 2, bias is
introduced in C5 when the association between the outcome
and the extraneous variable is strong relative to the error in
the extraneous variable; adjustment in this case is unwar-
ranted and in extreme cases can cause large bias and loss of

precision. Furthermore, this scenario is especially susceptible to
collider stratification by an unmeasured variable.27

Example: The Effect of Maternal Smoking and
Neonatal Mortality

As an example to illustrate overadjustment bias, we
examine the often-studied relation between birth weight and
neonatal mortality. Investigators have speculated for decades
on possible causes of neonatal mortality, and have consis-
tently demonstrated that birth weight is a strong predictor of
neonatal and infant mortality.28,29 When assessing the effect
of possible risk factors for neonatal and infant mortality (eg,
maternal smoking,28 multiple pregnancies,30 placenta pre-
via31), birth weight stratification or adjustment is frequently
undertaken. We follow the premises for a causal diagram as
proposed by Basso et al.32 They demonstrated that it is
plausible for the observed association between birth weight
and neonatal mortality to be due to an unmeasured confounder.
Under this conjecture, adjustment for birth weight in the study of
neonatal mortality would represent overadjustment.

We identified all infants born alive in the United States
in 1999–2001 (n � 11,597,620) through the national linked
birth/infant death data sets assembled by the National Center
for Health Statistics.33 These records contain information on
dates and causes of death, birth weight, maternal smoking,
and other medical and sociodemographic characteristics sys-
tematically recorded on the US birth certificates. Neonatal
mortality rates (denoted by the variable D in the causal

FIGURE 2. Large and small sample size
properties on Monte Carlo relative bias
and variance of total effect estimates af-
ter adjusting for unnecessary variables.
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diagram) were defined as the number of deaths within the first
28 days of life per 100,000 live births. Maternal smoking
(denoted by the variable E in the causal diagram) was
defined by self-report of prepregnancy smoking. Unmea-
sured fetal development during pregnancy is denoted by
the variable U in the causal diagram. Birth weight can be
thought of as a descending proxy for the unmeasured fetal
development measured with error (denoted by the variable
M in the causal diagrams). Following Basso et al,28 we
assume that the relation between birth weight and infant
mortality is due to unmeasured confounding by a condition
such as malformation, fetal or placental aneuploidy, infec-
tion, or imprinting disorder (denoted by the variable V in
DAG 6).

E � Prepregnancy maternal smoking
D � Neonatal mortality
U � Unmeasured fetal development during pregnancy
V � Unmeasured confounder, such as imprinting

disorder
M � Birth weight
Our analysis excluded data from California (due to lack

of smoking information), as well as data from infants with
missing information on birth weight or maternal smoking,
resulting in 10,035,444 live births. We used risk ratios and
differences to quantify the association between maternal
smoking and neonatal mortality, and 95% confidence inter-
vals (CIs) to quantify precision.

The neonatal mortality rate was 219 per 100,000 live
births, and 12% of mothers reported smoking. The unadjusted
risk ratio for the association between maternal smoking
and neonatal mortality was 2.49 (95% CI � 2.41–2.56).
Adjustment for birth weight (M in the graph) by stratifi-
cation attenuated the risk ratio to 2.03 (1.97–2.09). There-
fore, control (ie, adjustment) for birth weight resulted in a
risk ratio 18% smaller (1–2.03/2.49) than the unadjusted
risk ratio.

The unadjusted risk difference for the association be-
tween maternal smoking and neonatal mortality was 274 per
100,000 (95% CI � 262–287). Adjustment for birth weight
by stratification attenuated the risk difference to 228 per
100,000 (216 –247). Therefore, control (ie, adjustment) for
low birth weight resulted in a risk difference 17% smaller

(1–228/274) than the unadjusted risk difference. This difference
in the measure of association is likely due to the fact that
smoking causes changes in U (changes in fetal growth),
which affect birth weight and neonatal mortality sepa-
rately. Using empirical methods for confounding adjust-
ment, the differences between the estimated crude and
adjusted risk ratios and differences from this data support
the premise of adjusting for birth-weight when looking at the
total causal effect of smoking on neonatal mortality. How-
ever, the data and prior knowledge are consistent
with the change in estimate being due to overadjustment bias;
and therefore adjustment may be unwise. Instead, clearly
stating a causal question to be addressed, depicting the
possible data generating mechanisms using causal diagrams,
and measuring indicated confounders (or conducting a sen-
sitivity analysis) are paramount for such cases.

One situation that is prone to create confusion is based
on the fact that the adjusted model in this case for birth
weight would not be considered overadjustment bias when
estimating indirect and direct effects. Such conjectures beg
redrawing of DAG 6 to allow a direct causal effect form birth
weight to neonatal mortality. In summary, the data alone do
not identify causal relationships.

CONCLUSION
The term overadjustment is sometimes used to describe

control (eg, regression adjustment, stratification, restriction)
for a variable that increases rather than decreases net bias, or
that decreases precision without affecting bias. In many
situations adjustment can increase bias; this may be, for
example, due to a reduction in the total causal effect by
controlling for an intermediate variable or due to an induction
of associations by collider-stratification3,23 (ie, selection
bias arising due to conditioning on a shared effect). In the
second case (which we term unnecessary adjustment),
noncollapsibility1 of an effect estimate may cause a dif-
ference between the uncontrolled and controlled effect
estimates, even though no systematic error is present.
Moreover, adjusting for surrogates (proxies) of intermedi-
ate variables, either ascending or descending, when the
desired intermediate variable itself is unmeasured, can
have different effects on measures of association depend-
ing on the nature of the proxy.

For estimation of total causal effects, it is not only unnec-
essary but likely harmful to adjust for a variable on a causal path
from exposure to disease, or for a descending proxy of a variable
on a causal path from exposure to disease. As previously
discussed,13,34 estimation of direct effects of exposures (such as
maternal smoking) on outcomes (such as infant mortality) by
controlling for an intermediate variable (such as low birth
weight) are not valid when there are unmeasured shared causes
of low birth weight and infant mortality. Such estimates are
vulnerable to collider-stratification bias or exposure interactions
with the intermediate variable.14

(6)
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Overadjustment bias is not induced by effect decom-
position per se when the proper statistical methods are ap-
plied. Robins and Greenland,16 and Joffe et al35 provided the
conditions by which the estimation of the direct and indirect
effects can be separated, and the proper derivation to do so
nonparametrically. Overadjustment bias is induced in the
estimation of the total effect by adjusting for an intermediate
variable or a descendent of the unmeasured intermediate
variable. In this paper, we focused on the estimation of the
total causal effect, however, overadjustment bias or unneces-
sary adjustment may also occur while attempting to decom-
pose the effects; the principles described in this paper are still
valid. Here, we have attempted to clarify the concept of
overadjustment bias and to separate overadjustment bias from
the concept of unnecessary adjustment using DAGs. The
nonparametric nature of causal diagrams is their strength and
at the same time their pitfall, in that they provide an easy way
to identify the source of bias but not the magnitude. After
describing the overadjustment causal structure and demon-
strating the source of bias, we made linear assumptions to
quantify the bias. Our simulation study was not compre-
hensive to evaluate the effects on efficiency, in that it did
not cover all scenarios of effect size, type of outcome and
type of mode. This has been extensively studied by oth-
ers.24 We demonstrated that, even in the linear case, the
overadjustment bias is structural and not negligible, and
therefore overadjustment is unwarranted (even when by a
descending proxy). On the other hand, when estimating
total effects, sometimes one can improve (or harm) effi-
ciency without affecting bias by adjusting for variables we
defined as unnecessary, or by increasing the study sample
size. As an alternative, in these cases one might refer to it
as “bias-neutral adjustment.”

In conclusion, when estimating the total effect, we
define overadjustment bias as control for an intermediate
variable (or a descending proxy for an intermediate variable,
but not an ascending proxy) on a causal path from exposure
to outcome. We define unnecessary adjustment as any adjust-
ment for variables that does not alter the expectation of the
average causal effect of interest but may affect precision.
Moreover, overadjustment is a type of bias that is based on a
different structure from confounding or selection biases and
is not removable in an infinite sample, while inefficiencies
due to control for unnecessary variables are a function of
sample size.

An important point is that ascending proxies of
unmeasured intermediate variables are of little use in
decomposing total causal effects into direct and indirect
components. The present work reinforces the notion that
one is fairly well-protected from particular analytic pitfalls
if one follows the mantra not to control for factors affected
by exposure.

For analytical proof of the results presented in
this paper in the linear case see the Online Appendix
(http://links.lww.com/A1099).
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